You're asking about a chemical compound, **1-[1-(phenylmethyl)-4-piperidinyl]-3-(2,4,4-trimethylpentan-2-yl)thiourea**. This compound is also known by its IUPAC name, **N-(1-benzylpiperidin-4-yl)-N'-(2,4,4-trimethylpentan-2-yl)thiourea**.
This is a complex molecule with a long and descriptive name! To understand its importance in research, we need to break down its structure and identify potential applications.
**Understanding the Structure:**
* **Thiourea:** This is the core of the molecule. Thiourea is a sulfur-containing organic compound often used in chemical reactions and synthesis.
* **Piperidinyl:** A six-membered ring structure containing a nitrogen atom. This is a common motif in pharmaceuticals.
* **Phenylmethyl (benzyl):** A benzene ring attached to a methylene group (-CH2-). This structure adds aromaticity and potential for interactions with biological targets.
* **2,4,4-trimethylpentan-2-yl:** A branched alkyl group. This group adds bulk and hydrophobicity to the molecule.
**Potential Importance in Research:**
Based on its structure, this compound could be investigated for various research purposes:
* **Pharmacology:**
* **Anti-inflammatory activity:** Thiourea derivatives are known to have anti-inflammatory properties, potentially mediated by the piperidine ring and the sulfur atom.
* **Central nervous system activity:** The combination of a piperidine ring and a phenylmethyl group suggests potential for interactions with neurotransmitters and receptors in the brain. This could lead to the development of drugs for conditions like anxiety or depression.
* **Materials science:**
* **Polymer synthesis:** Thiourea derivatives can act as catalysts in polymer synthesis, leading to new materials with unique properties.
* **Organic electronics:** The presence of sulfur and aromatic rings could be beneficial for developing materials for organic light-emitting diodes (OLEDs) or other electronic devices.
**Key Points:**
* This compound's structure hints at potential for biological and chemical applications.
* Further research is needed to determine its exact properties and potential benefits.
* It's important to note that without specific studies on this compound, it's difficult to say definitively why it is important for research.
**Additional Notes:**
* You may find more information about this compound by searching databases like PubChem or SciFinder.
* If you're interested in learning more about thiourea derivatives, you can find a wealth of information in scientific journals and online databases.
If you have further questions about this compound or its potential applications, feel free to ask!
ID Source | ID |
---|---|
PubMed CID | 2098765 |
CHEMBL ID | 1465096 |
CHEBI ID | 120982 |
Synonym |
---|
OPREA1_784558 |
smr000261928 |
MLS000394524 |
CHEBI:120982 |
1-(1-benzylpiperidin-4-yl)-3-(2,4,4-trimethylpentan-2-yl)thiourea |
AKOS001057072 |
HMS2546I18 |
CHEMBL1465096 |
AB00020534-01 |
1-[1-(phenylmethyl)-4-piperidinyl]-3-(2,4,4-trimethylpentan-2-yl)thiourea |
Q27209209 |
Z45824860 |
Class | Description |
---|---|
piperidines | |
[compound class information is derived from Chemical Entities of Biological Interest (ChEBI), Hastings J, Owen G, Dekker A, Ennis M, Kale N, Muthukrishnan V, Turner S, Swainston N, Mendes P, Steinbeck C. (2016). ChEBI in 2016: Improved services and an expanding collection of metabolites. Nucleic Acids Res] |
Protein | Taxonomy | Measurement | Average (µ) | Min (ref.) | Avg (ref.) | Max (ref.) | Bioassay(s) |
---|---|---|---|---|---|---|---|
glp-1 receptor, partial | Homo sapiens (human) | Potency | 11.2202 | 0.0184 | 6.8060 | 14.1254 | AID624417 |
TDP1 protein | Homo sapiens (human) | Potency | 4.8922 | 0.0008 | 11.3822 | 44.6684 | AID686978; AID686979 |
Smad3 | Homo sapiens (human) | Potency | 35.4813 | 0.0052 | 7.8098 | 29.0929 | AID588855 |
aldehyde dehydrogenase 1 family, member A1 | Homo sapiens (human) | Potency | 39.8107 | 0.0112 | 12.4002 | 100.0000 | AID1030 |
67.9K protein | Vaccinia virus | Potency | 14.1254 | 0.0001 | 8.4406 | 100.0000 | AID720580 |
bromodomain adjacent to zinc finger domain 2B | Homo sapiens (human) | Potency | 44.6684 | 0.7079 | 36.9043 | 89.1251 | AID504333 |
P53 | Homo sapiens (human) | Potency | 35.4813 | 0.0731 | 9.6858 | 31.6228 | AID504706 |
euchromatic histone-lysine N-methyltransferase 2 | Homo sapiens (human) | Potency | 10.0000 | 0.0355 | 20.9770 | 89.1251 | AID504332 |
polyunsaturated fatty acid lipoxygenase ALOX12 | Homo sapiens (human) | Potency | 25.1189 | 1.0000 | 12.2326 | 31.6228 | AID1452 |
mitogen-activated protein kinase 1 | Homo sapiens (human) | Potency | 22.3872 | 0.0398 | 16.7842 | 39.8107 | AID1454 |
nuclear receptor ROR-gamma isoform 1 | Mus musculus (house mouse) | Potency | 12.0627 | 0.0079 | 8.2332 | 1,122.0200 | AID2546; AID2551 |
geminin | Homo sapiens (human) | Potency | 30.8678 | 0.0046 | 11.3741 | 33.4983 | AID624296; AID624297 |
lamin isoform A-delta10 | Homo sapiens (human) | Potency | 35.4813 | 0.8913 | 12.0676 | 28.1838 | AID1487 |
[prepared from compound, protein, and bioassay information from National Library of Medicine (NLM), extracted Dec-2023] |
Protein | Taxonomy | Measurement | Average | Min (ref.) | Avg (ref.) | Max (ref.) | Bioassay(s) |
---|---|---|---|---|---|---|---|
Mcl-1 | Homo sapiens (human) | IC50 (µMol) | 54.0000 | 0.4000 | 7.1344 | 54.0000 | AID1418 |
Muscarinic acetylcholine receptor M1 | Rattus norvegicus (Norway rat) | IC50 (µMol) | 54.0000 | 0.0005 | 2.7739 | 25.1700 | AID1418 |
Muscarinic acetylcholine receptor M3 | Rattus norvegicus (Norway rat) | IC50 (µMol) | 54.0000 | 0.0005 | 2.8919 | 25.1700 | AID1418 |
Muscarinic acetylcholine receptor M4 | Rattus norvegicus (Norway rat) | IC50 (µMol) | 54.0000 | 0.0005 | 2.7478 | 25.1700 | AID1418 |
Muscarinic acetylcholine receptor M5 | Rattus norvegicus (Norway rat) | IC50 (µMol) | 54.0000 | 0.0005 | 2.7802 | 25.1700 | AID1418 |
Muscarinic acetylcholine receptor M2 | Rattus norvegicus (Norway rat) | IC50 (µMol) | 54.0000 | 0.0005 | 3.3142 | 49.5000 | AID1418 |
[prepared from compound, protein, and bioassay information from National Library of Medicine (NLM), extracted Dec-2023] |
Assay ID | Title | Year | Journal | Article |
---|---|---|---|---|
AID651635 | Viability Counterscreen for Primary qHTS for Inhibitors of ATXN expression | |||
AID588501 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Lethal Factor Protease, MLPCN compound set | 2010 | Current protocols in cytometry, Oct, Volume: Chapter 13 | Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening. |
AID588501 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Lethal Factor Protease, MLPCN compound set | 2006 | Cytometry. Part A : the journal of the International Society for Analytical Cytology, May, Volume: 69, Issue:5 | Microsphere-based protease assays and screening application for lethal factor and factor Xa. |
AID588501 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Lethal Factor Protease, MLPCN compound set | 2010 | Assay and drug development technologies, Feb, Volume: 8, Issue:1 | High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors. |
AID588497 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain F protease, MLPCN compound set | 2010 | Current protocols in cytometry, Oct, Volume: Chapter 13 | Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening. |
AID588497 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain F protease, MLPCN compound set | 2006 | Cytometry. Part A : the journal of the International Society for Analytical Cytology, May, Volume: 69, Issue:5 | Microsphere-based protease assays and screening application for lethal factor and factor Xa. |
AID588497 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain F protease, MLPCN compound set | 2010 | Assay and drug development technologies, Feb, Volume: 8, Issue:1 | High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors. |
AID588499 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain A protease, MLPCN compound set | 2010 | Current protocols in cytometry, Oct, Volume: Chapter 13 | Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening. |
AID588499 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain A protease, MLPCN compound set | 2006 | Cytometry. Part A : the journal of the International Society for Analytical Cytology, May, Volume: 69, Issue:5 | Microsphere-based protease assays and screening application for lethal factor and factor Xa. |
AID588499 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain A protease, MLPCN compound set | 2010 | Assay and drug development technologies, Feb, Volume: 8, Issue:1 | High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors. |
AID504810 | Antagonists of the Thyroid Stimulating Hormone Receptor: HTS campaign | 2010 | Endocrinology, Jul, Volume: 151, Issue:7 | A small molecule inverse agonist for the human thyroid-stimulating hormone receptor. |
AID1745845 | Primary qHTS for Inhibitors of ATXN expression | |||
AID504812 | Inverse Agonists of the Thyroid Stimulating Hormone Receptor: HTS campaign | 2010 | Endocrinology, Jul, Volume: 151, Issue:7 | A small molecule inverse agonist for the human thyroid-stimulating hormone receptor. |
[information is prepared from bioassay data collected from National Library of Medicine (NLM), extracted Dec-2023] |
Timeframe | Studies, This Drug (%) | All Drugs % |
---|---|---|
pre-1990 | 0 (0.00) | 18.7374 |
1990's | 0 (0.00) | 18.2507 |
2000's | 1 (20.00) | 29.6817 |
2010's | 3 (60.00) | 24.3611 |
2020's | 1 (20.00) | 2.80 |
[information is prepared from research data collected from National Library of Medicine (NLM), extracted Dec-2023] |
According to the monthly volume, diversity, and competition of internet searches for this compound, as well the volume and growth of publications, there is estimated to be weak demand-to-supply ratio for research on this compound.
| This Compound (12.56) All Compounds (24.57) |
Publication Type | This drug (%) | All Drugs (%) |
---|---|---|
Trials | 0 (0.00%) | 5.53% |
Reviews | 0 (0.00%) | 6.00% |
Case Studies | 0 (0.00%) | 4.05% |
Observational | 0 (0.00%) | 0.25% |
Other | 5 (100.00%) | 84.16% |
[information is prepared from research data collected from National Library of Medicine (NLM), extracted Dec-2023] |